Chem. Ber. 115, 3025-3031 (1982)

Addukte von Lewis-Säuren mit 1,2,4 λ^4 ,3,5-Trithiadiazol-1-oxid

Herbert W. Roesky*a, Michael Kuhna und Jan W. Batsb

Anorganisch-Chemisches Institut der Universität Göttingen^a, Tammannstr. 4, D-3400 Göttingen, und Institut für Kristallographie und Mineralogie der Universität Frankfurt am Main^b, Senckenberganlage 30, D-6000 Frankfurt am Main

Eingegangen am 22. Januar 1982

Die Titelverbindung 1 reagiert mit den Lewis-Säuren $SnCl_4$ und $TiCl_4$ zu den 2:1-Addukten 1a und b und mit AsF₅ und SbF₅ zu den 1:1-Addukten 1c und d. Nach den Schwingungsspektren und einer Röntgenstrukturanalyse von 1a erfolgt die Koordination über das Sauerstoffatom, und die Liganden in 1a und b haben *cis*-Konfiguration. 1a kristallisiert in der monoklinen Raumgruppe $P2_1$.

Adducts of Lewis Acids with $1,2,4\lambda^4,3,5$ -Trithiadiazole 1-Oxide

The title compound 1 reacts with the Lewis acids $SnCl_4$ and $TiCl_4$ to yield the 2:1 adducts 1a and b and with AsF_5 and SbF_5 to form the 1:1 adducts 1c and d. According to the vibrational spectra and an X-ray analysis of 1a the coordination occurs via the oxygen atom. The ligands of 1a and b have *cis*-configuration. 1a crystallizes in the monoclinic space group $P2_1$.

 $1,2,4\lambda^4,3,5$ -Trithiadiazol-1-oxid (1) konnte erstmals durch Umsetzung von $[S_2N_2Sn_1(CH_3)_2]_2$ mit Thionyldifluorid gewonnen werden¹⁾ und wurde später einfacher durch Hydrolyse von Trithiadiazyldichlorid, $S_3N_2Cl_2$, mit Ameisensäure hergestellt²⁾. Die Strukturen der Edukte waren bekannt, und aufgrund der Synthesen wurde 1 ein Aufbau aus einem fünfgliedrigen S_3N_2 -Ring zugeschrieben.

1 ist bisher der einzige bekannte neutrale Schwefel-Stickstoffheterocyclus mit exocyclischem Sauerstoff an einem dreifach koordinierten Schwefel mit der formalen Oxidationsstufe + 4. Neben der Strukturaufklärung waren wir daran interessiert, ob entsprechend dem Formelschema ein intra- (A) oder intermolekularer (B) Austausch des exocyclischen Sauerstoffatoms stattfindet.

© Verlag Chemie GmbH, D-6940 Weinheim, 1982 0009 – 2940/82/0909 – 3025 \$ 02.50/0

Synthese und Spektren

1 ist bei Raumtemperatur eine rote Flüssigkeit, die beim Kühlen glasartig erstarrt. Es ließen sich bisher keine Einkristalle gewinnen. Die Reaktion von 1 mit Lewis-Säuren führt zu 2:1- und 1:1-Addukten 1a - d.

Die Reaktionen werden in Methylenchlorid oder flüssigem SO_2 durchgeführt. Bei den Addukten zeigte sich eine starke Veränderung der Farbe beim Übergang von den 2:1- zu den 1:1-Verbindungen mit stärkeren Lewis-Säuren. Während 1a und b gelb sind, haben 1c und d eine nahezu schwarze Farbe.

1a und b zeigen in ihren Schwingungsspektren im S – N-Valenzschwingungsbereich große Ähnlichkeit mit 1. Das Trithiadiazolsystem kann daher durch die Adduktbildung nur in untergeordnetem Maße verändert worden sein, so daß eine Koordination der Lewis-Säure an N-Atome des Ringes auszuschließen ist. Die in 1 bei 1125 cm⁻¹ liegende Bande der S = O-Valenzschwingung²) verschiebt sich in beiden Addukten stark nach niederen Wellenzahlen, so in 1a um 103 und in 1b um 102 cm⁻¹ und spaltet bei beiden in ein Dublett auf. Die Verschiebung sichert die Annahme einer Koordination über den Sauerstoff.

Die Aufspaltung der S = O-Valenzschwingung kann ein Festkörpereffekt sein oder in der Konfiguration der Addukte begründet liegen. So ist bei Ethylacetatkomplexen eine Aufspaltung der C = O-Valenzschwingung bei *cis*-Konfiguration der Diaddukte festzustellen³⁾. Die Metall-Halogen-Valenzschwingungen der Lewis-Säuren⁴⁾ werden durch die Addition der elektronenreichen Verbindung 1 geschwächt und zu niederen Frequenzen verschoben. In 1c und d wird die S = O-Valenzschwingung auf 875 bzw. 943 cm⁻¹ verschoben, so daß die Bindungsordnung der SO-Gruppe fast in den Bereich einer Einfachbindung rückt. Die Absorptionen für S – O-Einfachbindungen liegen im Bereich⁴⁾ zwischen 700 und 850 cm⁻¹. Man kann weiterhin folgern, daß die Wechselwirkung zwischen 1 und AsF₅ stärker ist als die mit SbF₅. Die Komplexbildung läßt sich in 1c und d durch die dipolare Grenzstruktur A beschreiben.

Zusammenfassend kann man feststellen, daß in der Folge $SnCl_4 \approx TiCl_4 < SbF_5 < AsF_5$ eine Verschiebung der SO-Valenzschwingung nach niederen Frequenzen stattfindet.

Die Schwächung der Schwefel-Sauerstoffbindung sollte zu einem rascheren Austausch des Sauerstoffs in 1c gegenüber 1 führen. Aufgrund von ¹⁵N-NMR-Untersuchungen in Abhängigkeit der Temperatur wollten wir einen Einblick gewinnen. Für 1 findet man erwartungsgemäß bei Raumtemperatur zwei Resonanzsignale. Dem Stickstoffatom, das dem unsubstituierten Schwefel benachbart ist, läßt sich das Signal bei 120.5 ppm und dem zweiten Stickstoffatom, das von der SO-Gruppe stärker entschirmt ist, die Resonanz bei 50.3 ppm zuordnen. Für 1c haben wir kein Lösungsmittel gefunden, in dem sich die Verbindung über einen längeren Zeitraum nicht zersetzt.

Röntgenstrukturanalyse von 1a*)

Ein Kristall mit dem Abmessungen $0.15 \times 0.17 \times 0.30$ mm wurde in eine Glaskapillare eingeschmolzen. Präzessions-Aufnahmen zeigten monokline Symmetrie, und die systematischen Auslöschungen ergaben als mögliche Raumgruppen $P2_1$ oder $P2_1/m$. Die Gitterkonstanten wurden aus 25 gut zentrierten Reflexen auf einem automatischen Enraf-Nonius-CAD4F-Diffraktometer zu a = 814.7(3), b = 1194.5(2), c = 832.7(4) pm, $\beta = 115.45(3)^{\circ}$ und $V = 731.7(9) \cdot 10^{6}$ pm³ bestimmt. Die Zelle enthält zwei Formeleinheiten, und die berechnete Dichte ist 2.455 Mgm⁻³. Die Intensitätsmessung erfolgte mit ω -scan-Technik in einer Hemisphäre bis $2\Theta = 50^{\circ}$ und Mo- K_{α} -Stahlung (Graphit-Monochromator). Insgesamt wurden 2857 Reflexe gemessen, von denen 1354 symmetrieunabhängig waren. Drei Standardreflexe zeigten einen Intensitätsabfall von 13%, wahrscheinlich wegen Strahlungsschäden des Kristalls. Die gemessenen Intensitäten wurden entsprechend renormiert. Es wurde eine empirische Absorptionskorrektur, die auf Psi-scans beruhte⁵, durchgeführt. Die maximalen Unterschiede in der Transmission betrugen 6%.

Die Formfaktoren und Werte für anomale Dispersion sind den Internationalen Tabellen⁶⁾ entnommen. Die Lösung der Struktur gelang durch eine Kombination von Patterson- und Fourier-Synthesen. Da sich die Struktur als nicht zentrosymmetrisch herausstellte, ist die korrekte Raumgruppe $P2_1$.

Die Verfeinerung der Struktur nach der Methode der kleinsten Quadrate ergab R(F) = 0.019, $R_w(F) = 0.021$ und $S = \{\sum w (F_o - F_o)^2/(n_o - n_v)\}^{1/2} = 0.79$. Eine abschließende Differenzsynthese zeigte keine Maxima, die größer als $0.3 e \text{ Å}^{-3}$ waren. Die Verfeinerung wurde anschließend wiederholt, wobei die Richtung der y-Achse umgedreht wurde, um die absolute Konfiguration zu bestimmen. Die deutlich schlechtere Übereinstimmung mit R(F) = 0.021 und $R_w(F) = 0.024$ bestätigt die zunächst angenommene Polarität als richtig. Die Parameter der Atomlagen sind in Tab. 1, die Winkel in Tab. 2 aufgeführt. Abb. 1 zeigt die Molekülgeometrie, Abb. 2 gibt die Numerierung der Atome und die interatomaren Abstände an.

Das Sn-Atom ist oktaedrisch von vier Cl und zwei S_3N_2O -Gruppen umgeben, wobei diese Gruppen in *cis*-Stellung angeordnet sind. Die Bindung erfolgt über den exocyclischen Sauerstoff mit relativ kurzen Sn – O-Abständen von 215.6(4) und 219.7(5) pm. In der Literatur wird für diese Abstände der Bereich 214 bis 268 pm angegeben⁸). Entsprechend sind die S – O-Abstände mit 150.2(5) und 148.5(5) pm beträchtlich länger als in unkoordinierten S – O-Gruppen. Wir selbst haben früher^{7,8}) Werte zwischen 140 und 145 pm gefunden. Ein Durchschnittswert von 143.4 ergab sich bei der Strukturanalyse von 15 Verbindungen⁹). Die vier Sn – Cl-Abstände unterscheiden sich untereinander nicht wesentlich.

Die Konformation der S_3N_2 -Ringe läßt sich als Briefumschlag-Konformation beschreiben. Die S(1)- und S(5)-Atome liegen 45.4(5) bzw. 31.1(5) pm außerhalb der

^{*)} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50140, des Autors und des Zeitschriftenzitats angefordert werden.

Ebene, die durch die restlichen vier Atome gebildet wird. Die Längen der S-N-Bindungen entsprechen Zwischenwerten von Einfach- und Doppelbindungen, die häufig in Schwefel-Stickstoff-Ringen beobachtet werden^{7,8,9)}. Der kürzeste Abstand entspricht jeweils der Bindung, die am entferntesten zum O-Atom liegt.

S(6) weist einen kurzen intramolekularen Kontaktabstand zu Cl(2) auf, der mit 334.6(3) pm etwa 30 pm kürzer ist als die Summe der van der Waals-Radien. Die Packung im Kristall wird durch eine Reihe von intermolekularen van der Waals-Kontakten gewährleistet. Sie sind meist $Cl \cdots S$ Kontakte und sind in Tab. 3 zusammengestellt.

Abb. 1 (links). Molekülgeometrie und Numerierung der Atome von 1a Abb. 2 (rechts). Bindungsabstände (pm) in 1a. Standardabweichungen in Klammern

Tab. 1. Parameter der Atomlagen und Temperaturfaktoren von 1a. Die Temperaturfaktoren sind definiert als $\exp[-2\pi^2(h^2a^{*2}U_{11} + \cdots + 2hka^*b^*U_{12} + \cdots)]$

Atom	×	У	z	U ₁₁	U ₂₂	U ₃₃	U ₁₂	^U 13	U ₂₃
\$n	0.96657(3)	0.2500(0)	0.71274(3)	0.02676(9)	0.0305(1)	0.02736(9)	-0.0020(2)	0.01054(7)	0.0018(2)
C1(1)	1.0347(2)	0.0617(1)	0.7957(2)	0.0545(6)	0.0356(6)	0.0508(6)	0.0031(6)	0.0189(5)	0.0107(6)
C1(2)	O,669B(1)	0.2398(2)	0.6935(2)	0.0361(4)	0.0529(7)	0.0646(5)	-0.0006(6)	0.0391(3)	0.0081(7)
C1(3)	1.2268(1)	0.2852(1)	0.6637(2)	0.0298(4)	0.0543(8)	0.0511(6)	-0.0011(5)	0.0192(4)	0.0066(5)
C1(4)	1,0901(2)	0.3312(1)	0.9988(2)	0.0750(8)	0.0613(8)	0.0425(5)	-0.0200(7)	0.0272(5)	~0.0183(6)
S(1)	0.8543(1)	0.2420(2)	0.2793(1)	0.0406(4)	0.0476(6)	0.0300(4)	-0.0046(7)	0.0119(3)	0.0030(7)
S(2)	0.5718(2)	0.2651(2)	0.0946(2)	0.0514(6)	0.070(1)	0.0463(6)	0.0235(8)	0.0068(5)	0.0018(8)
S(3)	0.7061(2)	0.0673(1)	0.0501(2)	0.0680(8)	0.0533(8)	0.0467(6)	0.0034(8)	0.0179(6)	-0.0067(7)
S(4)	0.6910(2)	0.5676(2)	0.7180(2)	0.0647(8)	0.068(1)	0.0577(7)	-0.0045(8)	0.0290(5)	-0.0193(7)
S(5)	0.7738(2)	0.5137(1)	0.5136(2)	0.0423(5)	0.0315(6)	0.0494(6)	0.0040(5)	0.0219(4)	0.0101(5)
S(6)	0.4230(2)	0.4554(1)	0.4545(2)	0.0360(6)	0.0571(9)	0.0629(8)	0.0022(7)	0.0112(5)	0,0077(8)
0(1)	0.8377(5)	0.1957(4)	0.4394(4)	0.049(2)	0.063(2)	0.025(1)	-0.021(2)	0.010(1)	-0.002(2)
0(2)	0.8945(5)	0.4150(3)	0.5847(5)	0.044(1)	0.041(2)	0.092(2)	0.009(2)	0.037(1)	0.021(2)
N(1)	0.8814(6)	0.1347(5)	0.1743(6)	0.049(2)	0.063(3)	0.043(2)	0.012(2)	0.020(1)	0.004(2)
N(2)	0.5386(7)	0.1423(5)	0.0103(6)	0.052(2)	0.072(3)	0.033(2)	-0.003(3)	0.009(2)	-0.001(2)
N(3)	0.5701(6)	0.4724(4)	0.3813(6)	0.054(2)	0.050(3)	0.036(2)	0.007(2)	0.012(2)	0.006(2)
N(4)	0.4923(6)	0.5088(5)	0.6409(7)	0.053(2)	0.056(3)	0.072(2)	0.014(2)	0.038(2)	0.011(2)

3028

Chem. Ber. 115 (1982)

A - B - C	(°)	A - B - C	(°)
Cl(1) - Sn - Cl(2)	94.39(7)	Sn = O(1) = S(1)	129.6(3)
Cl(1) - Sn - Cl(3)	96.02(6)	O(1) - S(1) - S(2)	101.8(2)
Cl(1) - Sn - Cl(4)	98.76(7)	O(1) - S(1) - N(1)	105.9(3)
Cl(1) - Sn - O(1)	88.21(15)	S(2) - S(1) - N(1)	93.9(2)
Cl(1) - Sn - O(2)	169.11(16)	S(1) - S(2) - N(2)	97.0(2)
Cl(2) - Sn - Cl(3)	165.48(6)	N(1) - S(3) - N(2)	108.2(4)
Cl(2) - Sn - Cl(4)	94.00(7)	S(1) - N(1) - S(3)	117.6(4)
Cl(2) - Sn - O(1)	83.84(13)	S(2) - N(2) - S(3)	118.1(4)
C1(2) - Sn - O(2)	87.75(13)	Sn - O(2) - S(5)	153.9(3)
Cl(3) - Sn - Cl(4)	94.38(6)	O(2) - S(5) - S(4)	107.3(2)
Cl(3) - Sn - O(1)	86.39(12)	O(2) - S(5) - N(3)	109.8(3)
Cl(3) - Sn - O(2)	80.16(12)	S(4) - S(5) - N(3)	92.9(3)
Cl(4) = Sn = O(1)	172.86(15)	S(5) - S(4) - N(4)	98.9(3)
Cl(4) = Sn = O(2)	91.73(16)	N(3) - S(6) - N(4)	109.0(4)
O(1) = Sn = O(2)	81.40(21)	S(5) - N(3) - S(6)	120.2(4)
		S(4) - N(4) - S(6)	115.6(4)

Tab. 2. Bindungswinkel (°) von 1a

Tab. 3. Kurze Kontaktabstände (pm) in 1a

Inte	rmolekular	Symmetrie Code				
A · · · B	<i>d</i> [pm]		Symmetrie-Code			
Cl(1) · · · S(5)	358.4(2)	2 - x	$-\frac{1}{2}+y$	1 - z		
$Cl(1) \cdots S(6)$	363.1(2)	1 - x	$-\frac{\overline{1}}{2}+y$	1-z		
$Cl(2) \cdots Cl(3)$	355.0(2)	-1 + x	ŷ	z		
$Cl(2) \cdots S(3)$	352.1(2)	x	у	1+z		
$Cl(2) \cdots S(6)$	358.3(3)	1 - x	$-\frac{1}{2}+y$	1-z		
$Cl(3) \cdots S(2)$	348.8(2)	1+x	$\frac{1}{y}$	1 + z		
$Cl(3) \cdots S(5)$	356.2(2)	2-x	$-\frac{1}{2}+x$	1-z		
$Cl(3) \cdots S(6)$	348.1(3)	1+x	ÿ	z		
$Cl(4) \cdots S(3)$	338.5(3)	2-x	$\frac{1}{2} + y$	1-z		
S(5) · · · N(1)	323.4(6)	2 - x	$\frac{\overline{1}}{2} + y$	1-z		
	Intramolekular					
	Cl(2) · · · S(6)	334.6(3)				
	Summe der van der Waals-Radien in pm (nach Pauling)					
	Cl · · · Cl 360	S · · · S 370	Cl · · · N 320			
	Cl · · · S 365	S · · · N 325				

Der Deutschen Forschungsgemeinschaft und der Hoechst AG danken wir für die Unterstützung dieser Arbeit.

Chem. Ber. 115 (1982)

Experimenteller Teil

Die Reaktionen wurden in sorgfältig getrockneten Lösungsmitteln unter Ausschluß von Luftfeuchtigkeit durchgeführt. – ¹⁵N-NMR-Spektren: Varian XL-100 mit externem ¹⁵N-Lock mit dem Nitratstickstoff von NH₄NO₃ in D₂O als externem Standard. – IR-Spektren: Perkin Elmer 735 B. Es werden nur die starken und sehr starken Banden angegeben. – Massenspektren: MAT CH5 Varian. **1a** – **d** zerfallen beim Übergang in die Gasphase in ihre Edukte.

 $1,2,4\lambda^4,3,5$ -Trithiadiazol-1-oxid (1) wurde nach Literaturangaben²⁾ dargestellt. – ¹⁵N-NMR: $\delta = 50.3$ (s), 120.5 (s) im Intensitätsverhältnis 1:1. Positives Vorzeichen bedeutet Verschiebung zu höherem Feld. – IR: Die Banden bei 980, 910, 734 und 666 cm⁻¹ ordnen wir versuchsweise den S – N-Valenzschwingungen und die bei 580 der N – S – N-Deformationsschwingung des S₃N₂-Ringes zu. Das von *Chivers* et al. ¹⁰) veröffentlichte IR-Spektrum von 1 stimmt mit unseren Ergebnissen nicht überein.

Tetrachlorobis(1,2,4 λ^4 ,3,5-trithiadiazol-1-oxid-O)zinn (1a): 1.52 g (10.8 mmol) 1 werden in 50 ml Methylenchlorid gelöst. Unter Rühren läßt man eine Lösung von 1.55 g (5.9 mmol) SnCl₄ in 20 ml Methylenchlorid zutropfen. Die tiefrote Lösung wird dabei orange. Man läßt nach erfolgter Zugabe noch 4 h bei Raumtemp. rühren und zieht dann das Lösungsmittel i. Vak. ab. Ein orangegelber Feststoff bleibt zurück, der sich aus flüssigem SO₂ umkristallisieren läßt. Zers.-P. 82-83 °C, Ausb. 2.8 g (95%). – IR: 1027 sst, 1012 sst, 994 st, 962 sst, 914 sst, 737 st, 718 st, 532 st, 347 st, 329 cm⁻¹ st. – UV (CH₂Cl₂): 250 und 379 nm.

Cl₄N₄O₂S₆Sn (540.9) Ber. Cl 26.22 N 10.36 S 35.57 Gef. Cl 26.2 N 10.3 S 34.5

Tetrachlorobis(1,2,4 λ^4 ,3,5-trithiadiazol-1-oxid-O)titan (1b): Zu 1.37 g (9.7 mmol) 1, gelöst in 50 ml CH₂Cl₂, gibt man tropfenweise 1.01 g (5.3 mmol) TiCl₄ in 20 ml CH₂Cl₂. Die tiefrote Lösung wird dabei orange. Nach erfolgter Zugabe läßt man noch 4 h bei Raumtemp. rühren und zieht dann die Hälfte des Lösungsmittels ab. Durch Kühlen auf -20° C fällt 1b als orangefarbene Kristallmasse aus. Zers.-P. 93 °C, Ausb. 1.4 g (63%). – IR (Nujol): 1030 sst, 1014 sst, 998 st, 972 sst, 913 sst, 739 st, 719 st, 528 st, 375 st, 363 cm⁻¹ sst.

Cl₄N₄O₂S₆Ti (470.1) Ber. Cl 30.17 N 11.92 S 40.92 Gef. Cl 29.9 N 12.1 S 41.9

Pentafluoro(1,2,4 λ^4 ,3,5-trithiadiazol-1-oxid-O)arsen (1c): In einer 250-ml-Steckfalle mit Teflonventil und Rührkern werden 1.43 g (10.2 mmol) 1 in 50 ml CH₂Cl₂ gelöst. Die intensiv rote Lösung wird mit flüssigem Stickstoff abgekühlt und die Falle auf 0.1 mbar evakuiert. Anschließend werden 1.73 g (10.2 mmol) AsF₅ einkondensiert. Unter Rühren erwärmt man auf Raumtemp. Nach 16 h wird das CH₂Cl₂ i. Vak. abgezogen. 1c bleibt als Festkörper zurück und läßt sich aus flüssigem SO₂ umkristallisieren. Zers.-P. 85-86°C, Ausb. 3.1 g (97%). – IR (Nujol): 941 st, 875 sst, 752 st, 710 sst, 559 st, 382 cm⁻¹ sst.

AsF₅N₂OS₃ (310.2) Ber. F 30.62 N 9.03 S 31.01 Gef. F 31.3 N 9.2 S 31.1

Pentafluoro($1, 2, 4\lambda^4, 3, 5$ -trithiadiazol-1-oxid-O)antimon (1d): 1.61 g (11.5 mmol) 1 werden in eine modifizierte Schlenkapparatur mit Fritte gegeben. Der gefüllte Schenkel wird mit flüssigem Stickstoff gekühlt und die Apparatur evakuiert. Danach werden 20 ml SO₂ und 2.55 g (11.8 mmol) SbF₅ einkondensiert. Man läßt das Reaktionsgemisch auf Raumtemp. kommen und rührt eine weitere h. Die Lösung wird über die Fritte dekantiert, danach das SO₂ durch Kühlen zurückkondensiert und anschließend i. Vak. abgezogen. Dabei bleibt 1d als dunkelgrüner Feststoff zurück. Zers.-P. 81 °C, Ausb. 4.0 g (98%). – IR (Nujol): 943 sst, 744 st, 725 st, 671 sst, 657 sst, 508 cm⁻¹ st.

F₅N₂OS₃Sb (356.9) Ber. F 26.61 N 7.85 S 26.95 Gef. F 25.0 N 7.7 S 26.4

- ¹⁾ H. W. Roesky und H. Wiezer, Angew. Chem. 87, 254 (1975); Angew. Chem., Int. Ed. Engl. 14, 258 (1975).
- ²⁾ H. W. Roesky, W. Schaper, O. Petersen und T. Müller, Chem. Ber. 110, 2695 (1977).
- ³⁾ M. F. Lappert, J. Chem. Soc. A 1962, 542.
- ⁴⁾ H. Siebert, Anwendungen der Schwingungsspektroskopie in der anorganischen Chemie, Springer Verlag, Berlin 1966. ⁵⁾ A. C. T. North, D. C. Phillips und F. S. Mathews, Acta Cryst., Sect. A 24, 351 (1968).
- ⁶⁾ International Tables for X-Ray Crystallography, Vol. III, Kynoch Press, Birmingham 1968.
 ⁷⁾ J. W. Bats, H. Fuess, M. Diehl und H. W. Roesky, Inorg. Chem. 11, 3031 (1978).
- 8) J. W. Bats und H. Fuess, Acta Cryst., Sect. B 35, 692 (1979).
- 9) A. Gieren, C. Hahn, B. Dederer, H. W. Roesky und N. Amin, Z. Anorg. Allg. Chem. 447, 179 (1978).
- ¹⁰⁾ T. Chivers und J. Proctor, Can. J. Chem. 57, 1286 (1979).

[14/82]